Surface Skin Temperature from Geostationary Satellite Data

Benjamin Scarino1, Patrick Minnis2, Rabindra Palikonda3, Christopher Yost1, BoaJuan Shan1, Rolf H. Reiche4, Qing Liu4

1Science Systems and Applications, Inc., Hampton, VA, USA (benjamin.r.scarino@nasa.gov) 2NASA Langley Research Center, Hampton, VA, USA 3NASA Goddard Space Flight Center, Greenbelt, MD, USA 4Science Systems and Applications, Inc., Linham, MD, USA

Introduction
The temporal and spatial coverage of geostationary sensors enable frequent retrieval of near-global surface skin temperature (T_s). In addition to cloud and other products (e.g., aircraft icing potential in figure below) developed from the globe, NASA Langley is producing estimates of T_s by applying an inverted correlated-k distribution method to clear-pixel values of TOA infrared temperatures (T_{IR}). This method yields clear-sky T_s values that are within ±2.0 K of measurements from ground-site instruments, e.g., the US Climate Reference Network (USCRN) and Atmospheric Radiation Measurement (ARM) climate research facility infrared thermometers. Comparison of the T_s product with MODIS land surface temperature reveals a relative accuracy within ±1 K for both day and night. These data, especially the eventual pixel-level data, will be useful for assimilation with atmospheric models, which rely on high-accuracy, high-resolution initial radiometric and surface conditions. Models should find the immediate availability and broad coverage of these T_s observations valuable, which can lead to improved forecasting for both regional and global numerical weather prediction models.

Background and Methodology
- Near-global radiometric and cloud microphysical property retrievals are achieved through the use of five GOESs:
- Nominal 8 retrievals per day, with potential for 24
- Modern-Era Retrospective Analysis for Research and Applications (MERRA) model forecasts provide T_s and thermodynamic profiles used to compute the atmospheric transmissivity (via correlated-k distribution1); together yielding estimated near-surface to TOA layer temperatures
- CERES cloud mask compares with estimates of T_s for visible-channel reflectance
- Mean observed properties are computed for clear and cloudy pixels in each 1.0° x 1.0° grid box: the cloud mask is repeated using the new clear-sky values
- Clear T_s pixels are grouped into 0.3125° x 0.25° tiles and brought to the surface using a modified correlated-k distribution technique1,3,4,5, thus yielding surface-leaving brightness temperature (T_{IR})
- Application of CERES emissivity (ϵ) maps yields the near-global high-resolution skin temperature products (HRT)

High-Resolution Surface Temperature Compared with Ground-Site Measurements
- HRT T_s retrievals from GOES-13 allow for frequent comparison with data taken at the Southern Great Plains (SGP) ARM 11.0 µm upwelling infrared thermometer (IRT; T_{IR}) and the Stillwater, OK and Avadonite, PA USCRN Apogee Precision InfraRed Thermocouple Sensors (IRTS-P; T_{IR})
- Because of a viewing zenith angle (VZA) dependency, must correct surface temperature to be warmer to match ground sites

Development Toward a Real-Time Pixel-Level Skin Temperature Product
- More continuous near-global coverage compared to the HRTP
- Cloudy/clear decision on pixel level greatly reduces chances of filtering good data points
- Close to 24 nearly-full disk retrievals for each satellite per day
- Instances of pixel misclassification remain, however, effect can be diminished by applying a buffer around known cloudy pixels

High-Resolution Skin Temperature Compared to MODIS Land Surface Temperature
- MODIS Land Surface Temperature (LST; T_s) data averaged to same resolution as HRTP tiles and compared to spectrally corrected HRTP (T_s) values over two 15° x 15° regions for both day and night
- First region includes the SGP domain and second region is over the northeastern United States
- Disparity between HRTP and Terra-MODIS daytime LST could be due to different viewing and illumination geometry
- Average clear-sky T_s anisotropy for the GOES-13 viewing and illumination angles at MODIS overpasses in SGP region is 0.5 - 4.0%
- Small differences can also, at least partially, be explained by atmospheric corrections

Conclusions and Future Work
- Except for certain viewing & illumination conditions, results comparable to MODIS to ±1 K, but with the added benefits of having consistent geometry and higher sampling frequency for any one location
- These nearly instantaneous, near-global datasets are available for assimilation in numerical weather prediction models
- Important step taken towards assimilation into the GEO-5 NWP system
- Need to better characterize angular and emissivity dependencies using nadir MODIS measurements
- Will employ the GMAQ GEOS-5 Model at finer resolution for pixel-level product, and globally validate near-real-time, near-global pixel-level skin temperature product by end of 2013
- Need to broaden the scale of data assimilation from Americas to all non-polar regions

References

Development Toward a Real-Time Pixel-Level Skin Temperature Product
- More continuous near-global coverage compared to the HRTP
- Cloudy/clear decision on pixel level greatly reduces chances of filtering good data points
- Close to 24 nearly-full disk retrievals for each satellite per day
- Instances of pixel misclassification remain, however, effect can be diminished by applying a buffer around known cloudy pixels

High-Resolution Skin Temperature Compared to MODIS Land Surface Temperature
- MODIS Land Surface Temperature (LST; T_s) data averaged to same resolution as HRTP tiles and compared to spectrally corrected HRTP (T_s) values over two 15° x 15° regions for both day and night
- First region includes the SGP domain and second region is over the northeastern United States
- Disparity between HRTP and Terra-MODIS daytime LST could be due to different viewing and illumination geometry
- Average clear-sky T_s anisotropy for the GOES-13 viewing and illumination angles at MODIS overpasses in SGP region is 0.5 - 4.0%
- Small differences can also, at least partially, be explained by atmospheric corrections

Conclusions and Future Work
- Except for certain viewing & illumination conditions, results comparable to MODIS to ±1 K, but with the added benefits of having consistent geometry and higher sampling frequency for any one location
- These nearly instantaneous, near-global datasets are available for assimilation in numerical weather prediction models
- Important step taken towards assimilation into the GEO-5 NWP system
- Need to better characterize angular and emissivity dependencies using nadir MODIS measurements
- Will employ the GMAQ GEOS-5 Model at finer resolution for pixel-level product, and globally validate near-real-time, near-global pixel-level skin temperature product by end of 2013
- Need to broaden the scale of data assimilation from Americas to all non-polar regions

References