Analysis of the 2003-04 burning seasons in southeast Mexico through a contextual fire detection algorithm based on GOES imagery

M. Montero, M. Polanco, F. Oropeza

2004 GOES Satellite Readout

December 9, 2004
Motivation

- We wanted to have a fire detection algorithm which provided us with the geolocation of biomass burning sources at southeast Mexico (largest burning region in the country).

- Given our own necessities and infrastructure we decided to get an approach based on GOES.
Overview

- Back in 2002, we implemented a contextual fire detection algorithm at IMTA. The algorithm, called ADFA (for Algoritmo de Deteccion de Fuegos en Activo, in spanish), is based on the Justice et al. (1996) technique, originally developed for AVHRR, and now adapted for the GOES imagery.

- The 2003 and 2004 biomass burning seasons in southeast Mexico and northern Central America were analyzed through ADFA and the results are presented here.
2. Datos de entrada

Para ejecutar ADFA es necesario tener un par de imágenes en formato TIFF \(^a\), las cuales se pueden conseguir de: http://rsd.gsfc.nasa.gov/goes

Imágenes de los canales 2 (\(\lambda=3.9\ \mu m\)) y 4 (\(\lambda=10.7\ \mu m\)) del imager del GOES-8 (ahora GOES-12). Tamaño de las imágenes: 300\(\times\)250 píxeles (a 8 bits).

\(^a\)del inglés Tagged Image File Format
3. Descripción de la técnica

*1.- Transformación de las cuentas del sensor a temperaturas de brillantez.

<table>
<thead>
<tr>
<th>Contador (8 bits)</th>
<th>Conversión</th>
<th>Temperaturas (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>177 a 255</td>
<td>163 K ≤ T(K) < 242 K</td>
<td>$C_a = 418 - T(K)$</td>
</tr>
<tr>
<td>0 a 176</td>
<td>242 K ≤ T(K) ≤ 330 K</td>
<td>$C_a = 660 - 2T(K)$</td>
</tr>
</tbody>
</table>

*2.- Criterio de clasificación de pixeles a fuegos potenciales.

Si se cumplen las condiciones siguientes, entonces el pixel objetivo es considerado un candidato a “fuego”, en caso contrario esos pixeles son descartados a ser potenciales “fuegos”.

\[
T_2 \geq 316 \text{ K} \\
T_4 \geq 280 \text{ K}
\]

*Fuente: http://www.cira.colostate.edu/RAMM/cal_val/infrared.htm
3. Criterio para la selección de pixeles de fondo válidos

\[T_2 < 316 \text{ K} \]
\[T_4 \geq 280 \text{ K} \]

Una vez que los pixeles satisfagan el criterio para ser pixeles de fondo válidos, el pixel sospechoso a “fuego” es encerrado en una malla de \(3 \times 3\), donde el pixel candidato a “fuego” está en el centro de la malla ...

La dimensión de la malla se obtiene de la función \(2n + 1\). Donde \(n \in [1,3]\).
4.- Cálculo de estadísticos

\[\Delta T_{pixel} = T_2 - T_4 \] (diferencia de temperaturas entre el canal 2 y el canal 4 del pixel objetivo).

\[T_{2promfondo} = \text{temperatura promedio de fondo del canal 2}. \]

\[T_{4promfondo} = \text{temperatura promedio de fondo del canal 4}. \]

\[\Delta T_{promfondo} = \text{temperatura promedio de la diferencia de temperaturas del canal 2 y el canal 4, de los pixeles de fondo válidos}. \]

\[\delta(\Delta T_{promfondo}) = \text{desviación estándar de fondo}. \]
5.- **Clasificación:**

a) **Fuego:** si cumple:

\[\Delta T_{pixel} \geq \Delta T_{prom,fondo} + \text{term} \]

donde **term** es el valor más grande de \(2\delta(\Delta T_{prom,fondo})\) o 5 K,

\[y \ T_4 \geq T_{4,\text{prom,fondo}} \]

b) **Desconocido:** si los pixeles de fondo cumplen con el criterio dos, pero hay un número insuficientes de pixeles de fondo, por lo que no es posible determinar si es o no fuego.

c) **No fuego:** Sí \(T_2 < 316 \)

d) **Contaminada por nubes:** Los pixeles no pasan la prueba \(T_4 \geq 280 \) K

e) **No dato:** \(T_2 \) y \(T_4 \) no están disponibles
ADFA vs ABBA

Comparison of fires detected from ADFA vs the well known ABBA for February 26, 2003 20:15 UTC
ADFA Statistics

26/02/03 20:15 UTC

<table>
<thead>
<tr>
<th>#F</th>
<th>#Px</th>
<th>#Py</th>
<th>Lat</th>
<th>Lon</th>
<th>T2(K)</th>
<th>T4(K)</th>
<th>T4b(K)</th>
<th>ΔT</th>
<th>T(2-4)b</th>
<th>T2-T4</th>
<th>m</th>
<th>#bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
<td>115</td>
<td>19.55</td>
<td>-90.11</td>
<td>326.00</td>
<td>294.50</td>
<td>291.62</td>
<td>8.00</td>
<td>13.12</td>
<td>31.50</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>143</td>
<td>182</td>
<td>16.91</td>
<td>-90.10</td>
<td>317.50</td>
<td>305.50</td>
<td>303.81</td>
<td>5.00</td>
<td>5.88</td>
<td>12.00</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>196</td>
<td>16.43</td>
<td>-94.76</td>
<td>320.50</td>
<td>310.00</td>
<td>308.07</td>
<td>5.00</td>
<td>5.29</td>
<td>10.50</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>217</td>
<td>15.57</td>
<td>-92.11</td>
<td>318.00</td>
<td>304.00</td>
<td>302.56</td>
<td>5.00</td>
<td>4.62</td>
<td>14.00</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>
ADFA: March 18-19, 2003
Daily distributions of the number of fires detected by ADFA during 2003. The days were the events with maximum activity during March (first and second half), April, and May.
ADFA, March 2003
ADFA, March 2004
BIOMASS BURNING SEASONS
2003 vs 2004

March-May 2003

March-May 2004
Mesoamérica en Llamas

La opulenta diversidad de vida silvestre en el sur de México y América Central está en peligro. Las agencias de gobierno y organizaciones nacionales y locales están usando satélites para controlar un vasto sistema de corredores de tierras protegidas.

Mayo 16, 2003: América Central está ardiendo.

En un área de gran biodiversidad, donde el 7% de las especies terrestres cohabitan en menos del 1% de la tierra del planeta, una población humana en rápido crecimiento lucha con la vasta pobreza que afecta a más de 20 millones de personas. Muchas de estas personas sobreviven a través de una agricultura contraproducente, de "tala y quema", colocándose a sí mismos y al bosque tropical en inexorable ruta de colisión con una catástrofe ecológica.

Derecha: Esta imagen por satélite de la NASA muestra cientos de incendios (indicados por puntos rojos) ardiendo cerca de la península de Yucatán, el 20 de abril de 2003. Crédito: MODIS.
Comparison of 2003 & 2004, fire frequency (>30)
Monthly statistics for ADFA during 2003

<table>
<thead>
<tr>
<th></th>
<th># Fuegos</th>
<th>T2 (K)</th>
<th>T4 (K)</th>
<th>T4b(K)</th>
<th>ΔT (K)</th>
<th>T(2-4)b (K)</th>
<th>T2-T4 (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marzo</td>
<td>28,369</td>
<td>321.54</td>
<td>307.55</td>
<td>305.12</td>
<td>5.31</td>
<td>4.92</td>
<td>13.99</td>
</tr>
<tr>
<td>Abril</td>
<td>40,999</td>
<td>320.82</td>
<td>305.59</td>
<td>303.68</td>
<td>5.16</td>
<td>6.65</td>
<td>15.23</td>
</tr>
<tr>
<td>Mayo</td>
<td>54,236</td>
<td>320.82</td>
<td>305.41</td>
<td>303.23</td>
<td>5.13</td>
<td>7.05</td>
<td>15.41</td>
</tr>
<tr>
<td>Junio</td>
<td>1,616</td>
<td>319.32</td>
<td>298.66</td>
<td>297.16</td>
<td>5.20</td>
<td>11.94</td>
<td>20.66</td>
</tr>
</tbody>
</table>
Final remarks

- Even though GOES has its own limitations, the new generation of GOES satellites (GOES-R) certainly going to improve considerably approaches like the one presented here.

- In the inmediate future we are planning to make full use of the GOES receive station we have at IMTA for this and other applications.
Thanks to

- NASA GSFC for providing a web site where everyone can access real-time GOES data (Imager) for FREE

- CONACYT for providing financial support to this work